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Abstract—KAIST Indoor Localization System (KAILOS) was
introduced in 2014 and became one of the world-first complete
indoor positioning solutions. It is mainly based on the WiFi signal
to estimate location and provide positioning service via mobile
application that has many restrictions by the Operating System.
This study proposes an extended architecture of KAILOS to
make use of the IoT device for removing the barriers of the
mobile-app-based approach and conveniently providing indoor
positioning service. Design of the IoT device that contains
hardware and software is also presented. Via this study, we prove
that the IoT-based approach is promising and can be a crucial
feature to widen applications of indoor localization services.

Index Terms—Indoor Localization, IoT, Wifi-fingerprintting,
KAILOS, Crowdsourcing.

I. INTRODUCTION

In recent years, the explosive development of the fourth
industrial revolution has created enormous demands for invent-
ing new technologies and improving old technologies for in-
dustrial and real-world applications. Indoor positioning is one
of such technologies. It will provide unprecedented services in
many aspects as fueled by the success of outdoor positioning
technologies. Indoor positioning technology is expected to be
the next significant leap for completing the global positioning
system. Therefore, many researchers around the world are
focusing on this direction.

In 2014, KAIST introduced the KAIST Indoor Localization
System (https://kailos.io/) [1]. KAILOS is a complete indoor
positioning system consisting of techniques and tools devel-
oped for three main components: KAI-Map, KAI-Pos, and
KAI-Navi. With KAILOS, it aims at two primary objectives.
Firstly, the system can provide indoor localization services to
any area where Wi-Fi fingerprinting is available. Secondly,
KAILOS provides the service with the required accuracy
while maintaining simplicity in building indoor maps and
radio maps. With built-in tools, KAILOS allows anyone to
contribute to data collection through a standard 6-step process,
including Building Registration, Floor Registration, Path and
POI Registration, Fingerprint Collection Planning, Fingerprint
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Collection, and Radio Map Construction. It is known that
KAILOS is one of the most accurate WiFi-based indoor
positioning systems. As a result, KAILOS has been used in
many places since 2014, such as universities, museums, and
office buildings.

Although KAILOS is a complete and stable system, its
positioning services are provided to end-users through mobile
applications running on Android and IOS, the two most
popular operating systems for smartphones globally. On the
platform, the user’s device must acquire wifi-fingerprinting,
bluetooth fingerprinting, and other sensor data for location
estimation. However, the access to the signals is limited
partially or totally by the OS. For example, in the IOS
operating system, the application is not allowed to scan WiFi
signals from the surrounding environment, while the Android
OS provides an API for this purpose with restrictions on
scanning frequency and scanning time (both foreground and
background scan) that may cause a serious problem with con-
sistent localization. Further, the installation of the application
causes inconvenience for occasional users and one-time users.
These problems significantly limit the scalability of KAILOS
in fields.

To eliminate the dependence on operating systems and
enrich the applications of KAILOS, this paper presents a new
approach based on Internet of Things (IoT). Accordingly, we
propose an extended architecture of KAILOS system with the
participation of specially designed wearable devices that assist
smartphone users in accessing KAILOS services regardless of
the operating system. The IoT device is equipped with multiple
connectivities and sensors, including LTE, WiFi, BLE, GNSS,
light sensor, pressure sensor, and inertial sensor. By being
interfered deeply to the physical layer, the device allows
continuous data collection at high sampling rates to feed the
KAILOS engine for estimating the precise location. Users
can easily access locating services via mobile web browsers
by scanning a barcode printed on the IoT device without
installing any smartphone application. The approach based on
IoT enables a plug-and-play service.

In the remaining part of the paper, we will briefly describe
the related works (Section II), then focus on explaining the
overall structure of the extended architecture (Section III), and
the design of the IoT device (Section IV). In Section V, we will978-1-7281-6218-8/22/$31.00 © 2022 IEEE
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present the experimental setup and results of the evaluation.
The final part of the paper is Section VI, where we draw our
conclusion with the limitation of the study and future works.

II. RELATED WORKS

In the history of indoor positioning, numerous studies have
been conducted. Most of these studies are based on well-
known wireless technology such as WiFi, Ultra Wide Band
(UWB), Bluetooth, Ultrasound, and Zigbee [2].

The latest version of Bluetooth technology is Bluetooth Low
Energy (BLE). Thanks to the advantages of throughput, range,
and low energy consumption, BLE is widely used in many
personal devices. Studies on the application of BLE position-
ing aim to take advantage of this popularity. Theoretically,
upon the properties of BLE, the applicable techniques can
be RSSI, AoA, and ToF [3]–[5]. Nevertheless, existing BLE-
based localization systems primarily utilize RSSI. In addition,
the operation of BLE in 2.4GHz and 5Ghz frequency under
low power mode makes it pretty sensitive to interference.
These reasons seriously limit the accuracy of the BLE-based
localization. Consequently, it is only used in proximity and
context detection applications. iBeacon (by Apple) and Ed-
dystone (by Google) are two typical BLE-based protocols
designed for the above applications.

Ultra Wide Band (UWB) technology is particularly opti-
mized to the physical layer for short-range localization based
on the received signal strength level. UWB employs an ultra-
wide frequency band from 3.1GHz to 10.6GHz to transmit
ultra-short pulses (period of less than one ns). This technology
is beneficial for minimizing power consumption, ensuring
resistance to interference, and increasing the penetration of
materials such as cement, steel, and even liquids [6]–[8].
Although this technology is ubiquitous in high-end handheld
devices, the UWB-based positioning system requires installing
assistive devices in the target spaces. This installation is not
only expensive but also affects the aesthetics and the layout of
the building. Hence, these disadvantages are major barriers to
building a general indoor positioning system on a large scale.

Like UWB, Ultrasound-based localization can also provide
relatively high accuracy in certain conditions. This positioning
technology is based on the understanding of sound waves
propagation in a physical environment [9]–[11]. We can indi-
rectly calculate the distance between objects through physical
formulas by determining sound waves’ velocity in a specific
environment and measuring propagating time using ultrasound
receivers and transmitters. However, the most significant dis-
advantage of this method originates from the characteristics
of propagating environment, which frequently change with the
variance of temperature and humidity. Dealing with this prob-
lem requires additional subsystems to measure environmental
conditions and compensate for the errors. Besides, ultrasound
receivers and transmitters are rather complex and cumbersome,
which practically limits the applications of this technique.

In addition to the above technologies, Radio Frequency
Identification Device (RFID) [12]–[14], Zigbee [15]–[17],
Visible Light (VL) [18]–[20], and Acoustic Signal [21], [22]

have also been studied for indoor positioning. However, they
are less common for several reasons, and two primary reasons
are high cost and low scalability.

WiFi-based indoor localization has been studied quite early
[2], [23]–[27]. Compared with other techniques, it can provide
location service at a low cost due to the abundantly global
availability of APs and mobile devices. For this reason, WiFi-
based technology is expected to become the core of a global
indoor positioning system. Indeed, in recent years, the world’s
foremost technology companies such as Google, Apple, and
Microsoft have begun to exploit the abundance of WiFi signals
on the global scale to provide indoor location services com-
bined with GPS, Glonass, Beidou, Galileo, etc. Although the
current accuracy and performance are not impressive due to the
passive data collection method, the participation of these big-
tech companies in studying WiFi-based locating technologies
will definitely create an enormous opportunity to promote the
development of this field.

III. OVERALL STRUCTURE OF THE SYSTEM

Unlike the conventional positioning system, where the
mobile application directly collects data, interacts with the
back-end server, and visualizes location, the extended system
involves the IoT devices. Despite the change in the overall
architecture, the extended architecture entirely inherits the
communication interface between the end devices and the
server, thus ensuring backward compatibility with the tra-
ditional mobile applications. The overall architecture of the
system is shown in Fig 1, which includes the main components
of the system, such as IoT device - smartphone pair, Front-
end Server, Back-end Server, Database, and Map Registration
tools. Details of each component will be presented as below.

A. Front-end and Back-end Server

The back-end server is the most crucial element of the
KAILOS system, which manages the operation of other com-
ponents in the system. Thanks to well-designed APIs, the
back-end server can flexibly interact with subsystems and other
systems without any difficulty. Moreover, the back-end server
also incorporates KAILOS engine, which is the heart of the
indoor positioning system. KAILOS engine includes a set of
filters, wifi-based location estimator, sensor fusion, pedestrian
dead reckoning, hybrid localization, and other advanced data
processing algorithms (Fig.2). On the other side, the Front-end
server is mainly responsible for user interface and position
visualization. Whenever a request from a user’s smartphone
is made, the front-end server will immediately connect to the
back-end side to inquire recorded location of the associated
IoT device and manage the visualization via mobile web
browsers. In this way, multiple smartphones can subscribe
to the location information of a single IoT device, which
efficiently benefits group-user in many applications.

B. Database

If KAILOS engine is the heart of the system, the database
can be considered as the blood, which is also an indispensable
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Fig. 1. Overall Structure of the IoT based Approach

part. The core of this database stores a large number of indoor
maps, radio maps, and sensor data collected from end devices.
The remaining part of the database is for supporting users
and crowdsourcing contributors to build the map. Within the
database, data is classified and stored systematically by area,
building, floor, and floor paths. This storage is beneficial for
visualization and provides essential information for smooth
transitions between indoor and outdoor environments.

C. IoT Device and Smartphone Pair

IoT device and smartphone are paired for the users to
access positioning services. In the conventional approach, we
operated an Android application to simultaneously visualize
locations and collect input data for the location estimator. The
limitation of this manner comes from the operating system
because it prohibits applications from getting WiFi signals at
a high scanning rate. Starting from Android 9, the foreground
apps can scan only four times every 2 minutes, and all
belonging background apps can scan once per 30 minutes [28].
As a result, the control of sampling frequency significantly
affects the performance of the positioning service. One of the
workarounds to this problem is to use interpolation techniques.

Fig. 2. Back-end Server Diagram

However, this solution is unsuitable for applications requiring
continuous positioning with high accuracy. On the other hand,
with the participation of an IoT device, this issue can be
entirely handled by dividing the tasks between the smartphone
and IoT device. The smartphone is used only for visualization
and user interface, while the IoT device is responsible for
data collection. This strategy removes the restrictions of the
operating system and provides high-quality data for the loca-
tion server. It is especially helpful because the iOS operating
system completely prohibits scan of WiFi signals from the
applications.

Fig.3 illustrates the operation of the smartphone and IoT

Fig. 3. Interaction of the IoT Device with other objects of the system
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device in association with other objects of the system. For
each IoT device, we assign an unchangeable UUID. When
the power is on, it continuously collects the necessary data,
including wifi-fingerprinting, IMU data, and GNSS data, and
sends them to the backend server. KAILOS engine then uses
these data to estimate the position of the device and store this
information on the backend server. When the users request the
positioning service, smartphones should be used to scan the
barcode printed on the device to acquire an URL that contains
the UUID of the IoT device. This URL will automatically
navigate the user to a web interface that displays the location
and other relevant service information. In the next section of
the paper, we will introduce the design of the IoT device and
its details, including hardware and software.

IV. DESIGN OF THE IOT DEVICE

A. Hardware Design

We design an IoT device with processing Unit (MCU),
WiFi, 4G LTE, BLE, IMU sensor, GNSS, Flash memory, and
USB communication. In addition, there are different sensors,
such as a light intensity sensor for Indoor/Outdoor context
switching detection and a barometer for floor detection. The
block diagram of the IoT device is shown in Fig.4. The central
processor of the device is a 32-bit MCU that is in charge
of coordinating the operation of the remaining components.
The advance of System On Chip (SoC) technology allows
us to select hardware integrating MCU, WiFi, and BLE on
a single chip. In this way, design complexity is reduced while
energy efficiency is significantly increased. The same strategy
is applied to choose one SoC, which encloses both GNSS
and LTE, and another SoC for Accelerometer, Gyroscope,
and magnetometer. To connect the components of the system
with the MCU, we mainly use three communication standards,
including universal asynchronous receiver-transmitter (UART),
Serial Peripheral Interface (SPI), and Inter-Integrated Circuit
(IIC). Among the above communication standards, UART is
used to connect to LTE/GNSS SoC, SPI is used to connect

Fig. 4. Block diagram of IoT device design

TABLE I
SPECIFICATION OF THE IOT DEVICE

CPU Xtensa 32-bit LX6 240 MHz

WiFi 802.11 b/g/n

Bluetooth V4.2 BR/EDR and BLE

LTE LTE-TDD/ LTE-FDD/HSPA+/GSM/GPRS/EDGE

GNSS GPS, GLONASS, BEIDOU, GALILEO, QZSS

IMU Sensor
Accelerometer: ±2g, ±4g, ±8gand ±16g
Gyroscope: ±250, ±500, ±1000, and ±2000°/sec
Magnetometer: ±4800 µT

Light Sensor 0 - 120000 lx

Barometer 10 - 2000 mbar (resolution 0.016 mbar)

Flash Memory Up to 128GB

Battery Li-Ion 900 mAh

to External Flash Memory, and I2C is used to connect to
other sensors. Theoretically, each I2C bus allows connecting to
multiple peripherals and sensors. However, we use two distinct
I2C buses for two groups of sensors classified by the sampling
rate in this design. Usually, the barometer has a lower sampling
rate than IMU and other sensors. Consequently, if they are
all connected on a single bus, the sampling rate of the IMU
sensor will be capped by the low sampling rate sensors. This
phenomenon remarkably affects the quality of the positioning
and heading estimation algorithm.

In any wearable device, the power unit is also an essential
part, which supplies power to the whole system. In this design,
the system power is supplied by a rechargeable battery via
a linear voltage regulator. Although linear voltage regulators

Fig. 5. Hardware design and appearance of the real IoT Device
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are slightly less efficient than switching regulators, they have
outstanding stability. The linear regulators do not interfere
with surrounding circuits by the high-order harmonics that are
regularly produced by the high-frequency switching operation
in the switching regulators. In addition, a power switcher and
a charger are also included to automatically switch between
power sources and charge the battery when a connection to an
external power source is detected.

The hardware design of the IoT devices and its specifica-
tion is described in Fig.5 and Table I. The IoT devices are
assembled in the form of wearable tags, and each device
is assigned an unique UUID, Barcode, and NFC tag. The
users can either utilize the smartphone camera for scanning
the barcode or tapping the smartphone NFC reader to quickly
access the visualization of positioning services. A device could
work properly with an additional sim card. Each sim card
should be registered to the local cellular network operators in
advance to be able to connect to the internet via LTE or GPRS.
The devices can automatically switch between LTE and GPRS
mode to maintain the connection. However, the LTE mode has
a higher priority for energy-saving purposes.

B. Software Design

KAILOS is a hybrid positioning system that combines WiFi,
Bluetooth, and PDR positioning techniques. In the hybrid
positioning system, each positioning technique is implemented
independently and then integrated together. Therefore the sys-
tem can work without the availability of the bluetooth signal,
and/or IMUs signal. In this study, we aim to make the IoT
devices work independently with the WiFi-based positioning
technique that is the core technology of KAILOS system.
The flow chart in Fig.7 explains the algorithms of the IoT
device. There are three phases in the operation of the IoT
device, including Initializing Phase, Positioning Phase, and
Sleeping Phase. In the initializing phase, the device executes
configuration to ensure proper operation of the LTE, WiFi,
Bluetooth, and sensors. Once the initialization is done, the
device immediately enters the positioning phase that scans
the available WiFi signals from the surrounding environment
and sends it to the server via LTE to estimate the location.
This phase is finished either if the device receives a response
from the server or if a timeout happens. The sleeping phase is
designed to prolong the battery life of the device. Putting the
device in sleep mode will minimize the power consumption,
leading to a longer-time operation of the device. This sleeping

Fig. 6. Response from server

Fig. 7. Algorithms of the IoT device

Fig. 8. Data body of the request

phase starts at the end of the positioning phase and lasts until
a low power timer triggers a wake-up signal.

In the positioning phase, instead of directly sending the raw
data to the server, we apply some pre-processing procedures to
normalize it. After the scanning process, the device obtains a
list of available APs, and each AP has a set of information. We
detect and remove the abnormal APs from the list by checking
the missing information of each AP. For the remaining APs,



2022 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 5 - 7 Sep. 2022, Beijing, China

we rank the APs by the Receive Signal Strength (RSS), then
select the top 20 APs accompanied with the device UUID to
generate the data body of the request. If the number of detected
APs is less than 20, all of them are included. By this procedure,
we can enhance the robustness of wifi-fingerprinting and
estimation results. Moreover, removing unnecessary data is
significantly beneficial for saving the cost of data plan. The
Fig.8 presents the data body of a request. After obtaining the
wifi fingerprinting from the IoT device, KAILOS server takes
several milliseconds to infer and return the device’s location.
The location data contains longitude, latitude, building ID,
floor ID, building name, and floor name as specified in Fig.6.

V. EXPERIMENTS AND RESULTS

A. WiFi Based Indoor Localization

To evaluate the performance of the new approach, we
conducted an experiment on the campus of Korea Advanced
Institute of Science and Technology (KAIST), Daejeon, Re-
public of Korea. Within the KAIST campus, radio maps of
most buildings are available in KAILOS database. Thus, we
could set up the experiment without so much difficulty. The
IT building(N1), where our office is located was selected as
the target building. N1 is a building located on the north side
of the campus. Table II depicts some information about the
building.

Fig.9 shows the setup of the experiment where the accuracy
was measured while a person wearing the IoT device was mov-
ing along the hallway of each level. The real-time visualization
of the location is done by using a Samsung Galaxy Note 10+
and an iPhone 11 pro. Fig.10 compares the estimated trajectory
of the device and the ground-truth trajectory on the 7th floor of
the building. As shown in the figure, the estimated trajectory
is very close to the ground-truth one.

To compare the IoT base approach and the mobile app-
based approach, we also measured the performance of the
smartphone app. Typically, the iOS operating system disallows
scanning WiFi from applications leading to the unavailability
of the iPhone app. Therefore, the comparison was made mainly
between the IoT device and the android smartphone app.
Following Table III, we can conclude that the performance
of the IoT device is better than the android app in terms of
accuracy, scanning frequency, and time per scan. Especially,

TABLE II
THE INFORMATION OF THE IT BUILDING N1

Building Name IT building N1
Building ID 5403e318b11b008c1406a645
Lower Left Corner Coordinate
[longitude, latitude]

[127.3652157, 36.3740271]

Upper Right Corner Coordinate
[longitude, latitude]

[127.3662484, 36.3743834]

Length (m) 114.6
Width (m) 39.6
Number of Floor 9
Number of Basement 1

Fig. 9. Experimental setup for the valuation

Fig. 10. The trajectory of the device compared with ground truth

TABLE III
COMPARISON OF IOT BASED APPROACH AND MOBILE-APP BASED

APPROACH

IoT Device
& Smartphone

Note 10+ Plus iPhone 11 Pro

Smartphone OS Android or IOS Android IOS
Free
App-Installation

Yes No not available

Group User Yes No not available
Time per scan (s) 2 4 not available
#Scan per minute 30 2 not available
Average Error (m) 2.4 2.5 not available

non-OS-constraint, Free App-Installation, and Group User are
the advanced features of the IoT-based approach compared
with the conventional one.

B. Effect of Sampling Rate on Pedestrian Dead Reckoning

Besides the benefit of using IoT based approach to WiFi-
based positioning, collecting sensing data at high sampling
frequencies can enhance the performance of sensor-fusion
positioning techniques. In this experiment, we collected the
IMU sensor data at the different sampling rates, then applied a
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PDR algorithm and compare the results produced by different
input data.

The pipeline of the used PDR algorithms in this experiment
is shown in Fig.11. The algorithm uses Accelerometer and
Gyroscope data to estimate the stride length and orientation
of the foots to present the object’s positions. This algorithm
has the benefit of being simple and not requiring foot-mounted
sensors to produce a good result. For step event detection,
we mainly used acceleration data with some basic signal
processing techniques. Firstly, we calculated the magnitude of
the acceleration before applying a low pass filter and removing
the effect of gravity. Secondly, we binarized the signal and
recognized the stance phase and swing phase of the steps by
monitoring the raising and lowering pulses.

Theoretically, the heading information can be obtained in
some different ways. For example, we can calculate absolute
orientation from acceleration and magnetic field or retrieve
relative orientation from the gyroscope. The optimal weighting
algorithms such as Mahony or Madwick can also be an option
[29], [30]. In this case, we use angular velocity signal from
the gyroscope and acceleration signal from the accelerator to
represent the device’s orientation via direction cosine matrix
(DCM) [31], [32]:

C(t+ δt) = C(t).exp

(∫ t+δt

t

ω(τ)dτ)

)
(1)

where C(t+δt) and C(t) are the rotation matrix at time step
t + δt and t respectively, and ω(τ) is instantaneous angular
velocity.

The stride length should also be estimated at every detected
step. To this end, we imitate a method proposed by Weinberg
of Analog Device [33]. This method aims to exploit the
relationship between stride length and the bounce, which
actually is the vertical movement of the human hip while
walking. By doing so, the technique can robustly produce the
distance measurement at an accuracy of 92 % over a variety
of subjects of different leg lengths.

S = 4
√
Amax −Amin.n.K (2)

Equation 2 shows how the distance is estimated via accel-
eration information. In that, S is walking distance (equal to
stride length if the number of steps walked n = 1), Amin and
Amax are the minimum and maximum acceleration measured
in the Z axis in a single stride respectively. K is a constant
for unit conversion (i.e., feet or meters traveled)

Consequently, the coordinate P (xk, yk) of the object at
detected step k can be determined as:

Fig. 11. Pedestrian Dead Reckoning Algorithms

Fig. 12. Performance of the PDR Algorithm in different sampling rates

TABLE IV
THE SAMPLING RATE OF THE SENSORS OF DIFFERENT PLATFORMS

IoT Device Note 10+ Plus Galaxy S6 iOS

Accelerometer 1000 Hz 500 Hz 200 Hz 100 Hz

Gyroscope 1000 Hz 500 Hz 200 Hz 100 Hz

Magnetometer 100 Hz 100 Hz 100 Hz 100 Hz

{
yk = yk−1 + Sk. cos(δk)

xk = xk−1 + Sk. sin(δk)
(3)

where Sk and δk are stride length and orientation at stance
phase of step k respectively.

Similar to the previous experiment, we selected the N1
building for data collection. This time, we collected the IMU
sensor data at three different sampling rates (25Hz, 50Hz, and
100Hz) along the same planned trajectory on the 7th floor of
the building. Fig. 12 shows the trajectories estimated by the
PDR algorithm for 25Hz, 50Hz, and 100Hz data. Compared
with the ground-truth trajectory, the trajectory corresponding
to 100 Hz data has the best matching, followed by the
trajectory of 50Hz data, while 25 Hz data result in the least
matching trajectory. The experimental result demonstrated that
the higher sampling rate resulted in a better performance of
the positioning algorithm. Table IV also indicates that the
IoT device outperforms other mobile platforms in terms of
maximum sampling rate of the integrated sensors. Further,
the IoT device approach provides not only high-speed data
collection but also a mostly perfect sampling period that
significantly benefits the data-preprocessing step.

VI. CONCLUSION AND DISCUSSION

This paper presented an IoT-based approach to a WiFi-based
indoor positioning system. To our knowledge, this is the first
time an IoT device is included in a system such as KAILOS
to eliminate the weaknesses caused by providing service on
mobile platforms. The results demonstrated that the approach
is promising and will be a great opportunity to popularize
applications of indoor positioning in real life. Our current
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deployment of the KAILOS system with the IoT devices in a
Science Museum to analyze the visitor’s behaviors is one of
examples.

In a nutshell, there are many advantages when a dedicated
positioning hardware device equipped with various sensors is
prepared. First, it can free us from the limitations of mobile
platforms. WiFi signals and GPS signals can be collected
whenever necessary. Second, the signal collection period of
the sensors can be arbitrarily adjusted, and each sensor can
have a different signal collection cycle. By collecting signals
according to the signal collection cycle of each sensor, it
is possible to prevent some signals from being dropped. In
addition, it is possible to develop an optimal sensor access
protocol for various sensors. Third, it is possible to develop a
sensor fusion technique by installing new sensors that are not
available in smartphones. For example, some environmental
sensors (for indoor/outdoor detection). If necessary, these
sensors can be easily included in the device. Although the
current design has some limitations, such as it doesn’t work
with 5GHz WiFi, we consider this study is the very first step
of our ambitiousness to produce an indoor/outdoor positioning
SoC for any wearable device. For future works, we are going
to implement the full functionality of the IoT device for the
extended KAILOS system. Additionally, we will improve the
hardware design to make it more lightweight, have a longer
battery life, and support dual-band WiFi (2.4GHz and 5GHz).
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